Fatigue-crack growth properties of thin-walled superelastic austenitic Nitinol tube for endovascular stents.

نویسندگان

  • J M Stankiewicz
  • S W Robertson
  • R O Ritchie
چکیده

Over the past 10 years, the supereleastic nickel-titanium alloy Nitinol has found widespread application in the manufacture of small-scale biomedical devices, such as self-expanding endovascular stents. Although conventional stress/strain-life (S/N) analyses are invariably used as the primary method for design against fatigue loading and for predicting safe lifetimes, fracture mechanics-based methodologies provide a vital means of assessing the quantitative effect of defects on such lifetimes. Unfortunately, fracture mechanics studies on fatigue in Nitinol are scarce, and most results do not pertain to the (thin-walled tube) product forms that are typically used in the manufacture of endovascular stents. In the current work, we document the basic fatigue-crack growth properties of flattened thin-walled ( approximately 400 microm thick) Nitinol tubing in a 37 degrees C air environment. Crack-growth behavior is characterized over a wide range of growth rates ( approximately 6 orders of magnitude) and load ratios, that is, as a function of the alternating and maximum stress intensities, at 50 Hz. Limited experiments at both 5 and 50 Hz were also performed in 37 degrees C air and simulated body fluid to determine whether the cyclic frequency affects the fatigue behavior. Fatigue-crack growth-rate properties in such thin-walled Nitinol tube are found to be quite distinct from limited published data on other (mainly bulk) product forms of Nitinol, for example, bar and strip, both in terms of the relative fatigue thresholds and the variation in steady-state growth rates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects.

Endovascular stents made of the superelastic nickel-titanium alloy Nitinol are subjected in service to tens of millions of loading cycles and even "single-event" overloads, both of which can potentially result in fracture and/or complete failure of the device. A fracture-mechanics-based methodology can provide a means to quantify relevant material parameters critical to the design against such ...

متن کامل

A fracture-mechanics-based approach to fracture control in biomedical devices manufactured from superelastic Nitinol tube.

Several key fracture-mechanics parameters associated with the onset of subcritical and critical cracking, specifically the fracture toughness, crack-resistance curve, and fatigue threshold, have recently been reported for the superelastic alloy Nitinol, in the product form of the thin-walled tube that is used to manufacture several biomedical devices, most notably endovascular stents. In this s...

متن کامل

Fatigue-crack propagation in Nitinol, a shape-memory and superelastic endovascular stent material.

Improving the design and performance of medical stents for implantation in the human body is of current interest. This paper describes a study of fatigue-crack propagation behavior in the superelastic alloy Nitinol. Specifically, the objective of this work was to study the effect of environment on cyclic crack-growth resistance in an approximately 50Ni-50Ti (atom %) alloy and to provide the nec...

متن کامل

An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices.

Medical devices, particularly endovascular stents, manufactured from superelastic Nitinol, a near-equiatomic alloy of Ni and Ti, are subjected to complex mixed-mode loading conditions in vivo, including axial tension and compression, radial compression, pulsatile, bending and torsion. Fatigue lifetime prediction methodologies for Nitinol, however, are invariably based on uniaxial loading and th...

متن کامل

Crystallographic texture for tube and plate of the superelastic/shape-memory alloy Nitinol used for endovascular stents.

The superelastic/shape-memory material, Nitinol, an approximately equiatomic alloy of Ni and Ti, is rapidly becoming one of the most important metallic implant materials in the biomedical industry, in particular for the manufacture of endovascular stents. As such stents are invariably laser-machined from Nitinol tubes or sheets rolled into tubes, it is important to fully understand the physical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 81 3  شماره 

صفحات  -

تاریخ انتشار 2007